Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Cem Cüneyt Ersanlı, ${ }^{\text {a* }}$ Ciğdem Albayrak, ${ }^{\text {b }}$ Mustafa Odabașoğlu
and Canan Kazak $^{\text {b }}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit Samsun, Turkey, and ${ }^{\text {b }}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit Samsun, Turkey

Correspondence e-mail: ccersan@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.033$
$w R$ factor $=0.086$
Data-to-parameter ratio $=11.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(Z)-6-\{[1,3-Dihydroxy-2-(hydroxymethyl)propan-2-ylamino]methylene\}-2-methoxy-4-\{(E)-[3-(trifluoro-methyl)phenyl]diazenyl\}cyclohexa-2,4-dienone

The molecule of the title compound, $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5}$, at 150 K , is nearly planar and exists in the keto-amine ($\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$) tautomeric form, with a strong intramolecular hydrogen bond of 2.585 (2) \AA between the O and N atoms. The configuration around the azo $-\mathrm{N}=\mathrm{N}$ - double bond is trans, as found for other diazene derivatives, and the dihedral angle between the planes of the two aromatic rings is $7.81(4)^{\circ}$.

Comment

Optically active azobenzene polymers are very important functional materials because of their photoresponsive properties. The pendant azobenzene groups in these materials behave as both photoresponsive chromophores and mesogens (Labarthet et al., 1999). Recently, the formation of holographic gratings with polymeric azobenzene liquid crystals (LC) containing only azobenzene groups, where each group is mesogenic and photoresponsive, was reported (Yamamoto et al., 2001).

(I)

There is considerable interest in Schiff base ligands and their complexes with regard to their striking antitumour activities (Zhou et al., 2000). Among them, o-hydroxy Schiff base ligands and their complexes derived from the reaction of o-hydroxyaldehydes with aniline have been extensively studied (Stewart \& Lingafelter, 1959; Calligaris et al., 1972; Maslen \& Waters, 1975) and a number of these compounds have been used as models for biological systems (Costamagna et al., 1992, 1998). o-Hydroxy Schiff bases have previously been observed in the keto form (Ersanlı et al., 2003; Ersanlı, Albayrak, Odabaşoğlu, Thöne \& Erdönmez, 2004), in the enol form (Ersanlı, Odabaşoğlu et al., 2004a; Ersanlı, Albayrak, Odabaşoğlu \& Erdönmez, 2004) or in enol/keto mixtures (Nazır et al., 2000), by means of H -atom transfer. Related to this phenomenon, we present here the structure of the title compound, (I).

The C11-O2 and C15-N3 bond lengths verify the ketoamine form of compound (I) (Table 1 and Fig. 1). These

Figure 1
A view of the molecule of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
distances agree with the corresponding distances in 4-[(2-chlorophenyl)diazenyl]-6-methoxy-2-\{[tris(hydroxymethyl)-methyl]aminomethylene\}cyclohexa-3,5-dien-1(2H)-one [1.287 (2) and 1.294 (2) A; Ersanlı, Albayrak, Odabaşoğlu, Thöne \& Erdönmez, 2004], which also shows the keto-amine tautomeric form. The same bonds can be compared with the corresponding distances in 2-[2-(hydroxymethyl)phenyliminomethyl]phenol [1.354 (2) and 1.275 (2) Å; Ersanlı, Odabaşoğlu et al., 2004a] and 4-(2-hydroxyphenyliminomethylene)phenol $[1.355$ (2) and 1.278 (2) \AA; Ersanl, Albayrak, Odabaşoğlu \& Erdönmez, 2004], which exist in the enol-imine tautomeric form.

In the azo group of (I), the $\mathrm{C} 1-\mathrm{N} 1$ and $\mathrm{N} 2-\mathrm{C} 8$ bond lengths [1.426 (2) and 1.411 (2) Å, respectively] indicate significant single-bond character, whereas the $-\mathrm{N}=\mathrm{N}$ - bond length $[1.264(2) \AA$] is indicative of significant double-bond character. Similar values have been observed in other transazo compounds (Ersanlı, Odabaşoğlu et al., 2004b; Ersanlı, Albayrak, Odabaşoğlu, Kazak \& Erdönmez, 2004). The dihedral angle between the mean planes of the C1-C6 benzene ring and the $\mathrm{C} 1-\mathrm{N} 1=\mathrm{N} 2-\mathrm{C} 8$ azo bridge is $8.36(7)^{\circ}$, and the angle between the planes of the $\mathrm{C} 1-$ $\mathrm{N} 1=\mathrm{N} 2-\mathrm{C} 8$ azo group and the $\mathrm{C} 8-\mathrm{C} 13$ benzene ring is $8.20(5)^{\circ}$. The angle between the two benzene rings is 7.81 (4) ${ }^{\circ}$.

There is a strong intramolecular $\mathrm{N} 3-\mathrm{H} 3 N \cdots \mathrm{O} 2$ hydrogen bond (Table 2), with the H atom transferred from the O to the N atom. The $\mathrm{N} 3 \cdots \mathrm{O} 2$ distance $[2.585(2) \AA]$ is shorter than the sum of the van der Waals radii of O and N [$3.07 \AA$; Bondi et al., 1964] and comparable with the distances observed in 4-[(2-chlorophenyl)diazenyl]-6-methoxy-2-\{[tris(hydroxy-methyl)methyl]aminomethylene\}cyclohexa-3,5-dien-1(2H)one [2.584 (2) Å; Ersanlı, Albayrak, Odabaşoğlu, Thöne \& Erdönmez, 2004]. Each molecule also participates in O$\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2 and Fig. 2).

Experimental

Compound (I) was prepared using o-vanillin, 3-(trifluoromethyl)aniline and tris(hydroxymethyl)aminomethane as starting materials (Ersanlı, Albayrak, Odabaşoğlu, Thöne \& Erdönmez,
2004). A mixture of 3 -(trifluoromethyl)aniline ($1.61 \mathrm{~g}, 10 \mathrm{mmol}$), water (50 ml) and concentrated hydrochloric acid ($2.5 \mathrm{ml}, 30 \mathrm{mmol}$) was heated with stirring until a clear solution was obtained. This solution was cooled to $273-278 \mathrm{~K}$ and a solution of sodium nitrite $(0.96 \mathrm{~g}, 14 \mathrm{mmol})$ in water was added dropwise while the temperature was maintained below 278 K . The resulting mixture was stirred for 30 min in an ice bath. o-Vanillin ($1.22 \mathrm{~g}, 10 \mathrm{mmol}$) solution (pH 9) was gradually added to a cooled solution of 3 -(trifluoromethyl)benzenediazonium chloride, prepared as described above, and the resulting mixture was stirred at $273-278 \mathrm{~K}$ for 60 min in an ice bath. The product was recrystallized from ethyl alcohol to obtain solid 3-methoxy-5-[3-(trifluoromethyl)phenylazo]salicylaldehyde. To a solution of this solid ($1.74 \mathrm{~g}, 5 \mathrm{mmol}$) in butan-1-ol (75 ml) was added a solution of tris(hydroxymethyl)aminomethane ($0.605 \mathrm{~g}, 5 \mathrm{mmol}$) in butan-1-ol (25 ml). The mixture was stirred under reflux and the water produced in the reaction was distilled out. The resulting red precipitate was filtered off and recrystallized from ethyl alcohol. Crystals of (I) were obtained after 2 d by slow evaporation from acetonitrile (yield 77\%; m.p. 518-519 K).

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5}$
$M_{r}=427.38$
Monoclinic, $P 2_{1} / c$
$a=16.4030(13) \AA$
$b=10.3467(5) \AA$
$c=11.4251(9) \AA$
$\beta=100.052(6)^{\circ}$
$V=1909.3(2) \AA^{3}$
$Z=4$
$D_{x}=1.487 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation

Cell parameters from 12935
reflections
$\theta=1.8-27.3^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Prism, red
$0.36 \times 0.31 \times 0.20 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.955, T_{\text {max }}=0.972$
17660 measured reflections
4187 independent reflections

Refinement

Refinement on F^{2}

> 3278 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.028$
> $\theta_{\max }=27.1^{\circ}$
> $h=-17 \rightarrow 20$
> $k=-13 \rightarrow 13$
> $l=-14 \rightarrow 14$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0438 P)^{2}\right. \\
&+0.2797 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}
\end{aligned}
$$

Table 2
Hydrogen-bond geometry ($\left(\mathrm{A},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3N \cdots O2	$0.89(2)$	$1.82(2)$	$2.585(2)$	$143(2)$
O3-H3O $\cdots 4^{\mathrm{i}}$	$0.82(2)$	$1.89(2)$	$2.712(1)$	$177(2)$
O4-H4O $\cdots \mathrm{O}^{\text {ii }}$	$0.78(2)$	$2.02(2)$	$2.751(1)$	$157(2)$
O4-H4O $^{\text {ii }} 1^{\text {ii }}$	$0.78(2)$	$2.26(2)$	$2.804(1)$	$128(2)$
O5-H5O \cdots O3 $^{\text {iii }}$	$0.83(2)$	$1.90(2)$	$2.731(1)$	$174(2)$
Sym				

Symmetry codes: (i) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $-x,-y,-z$.

All H atoms were refined isotropically. The refined $\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-$ H bond lengths are in the ranges 0.96 (2)-1.01 (2) and 0.78 (2)0.83 (2) \AA, respectively. The $\mathrm{N} 3-\mathrm{H} 3 N$ bond length is 0.89 (2) \AA.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Calligaris, M., Nardin, G. \& Randaccio, L. (1972). Coord. Chem. Rev. 7, 385403.

Costamagna, J., Barroso, N. P., Matsuhiro, B. \& Villagrán, M. (1998). Inorg. Chim. Acta, 273, 191-195.
Costamagna, J., Vargas, J., Latorre, R., Alvarado, A. \& Mena, G. (1992). Coord. Chem. Rev. 119, 67-88.
Ersanlı, C. C., Albayrak, Ç., Odabaşoğlu, M. \& Erdönmez, A. (2003). Acta Cryst. C59, o601-o602.
Ersanlı, C. C., Albayrak, Ç., Odabaşoğlu, M. \& Erdönmez, A. (2004). Acta Cryst. E60, o389-o391.
Ersanlı, C. C., Albayrak, Ç., Odabaşoğlu, M., Kazak, C. \& Erdönmez, A. (2004). Acta Cryst. C60, o455-o457.

Ersanlı, C. C., Albayrak, Ç., Odabaşoğlu, M., Thöne, C. \& Erdönmez, A. (2004). Acta Cryst. C60, o133-o135.

Figure 2
Part of the crystal packing of (I). Hydrogen bonds are drawn as dashed lines. For the sake of clarity, all H atoms, except for $\mathrm{H} 3 \mathrm{~N}, \mathrm{H} 3 \mathrm{O}, \mathrm{H} 4 \mathrm{O}$ and H5O, have been omitted.

Ersanlı, C. C., Odabaşoğlu, M., Albayrak, Ç. \& Erdönmez, A. (2004a). Acta Cryst. E60, o264-o266.
Ersanlı, C. C., Odabaşoğlu, M., Albayrak, Ç. \& Erdönmez, A. (2004b). Acta Cryst. E60, o230-o231.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Labarthet, F. L., Rochon, P. \& Natansohn, A. (1999). Appl. Phys. Lett. 75, 1377-1379.
Maslen, H. S. \& Waters, T. N. (1975). Coord. Chem. Rev. 17, 137-176.
Nazır, H., Yıldız, M., Yılmaz, H., Tahir, M. N. \& Ülkü, D. (2000). J. Mol. Struct. 524, 241-250.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stewart, J. M. \& Lingafelter, E. C. (1959). Acta Cryst. 12, 842-845.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Yamamoto, T., Ohashi, A., Yoneyama, S., Hasegawa, M., Tsutsumi, O., Kanazawa, A., Shiono, T. \& Ikeda, T. (2001). J. Phys. Chem. B, 105, 23082313.

Zhou, Y.-S., Zhang, L.-J., Zeng, X.-R., Vital, J. J. \& You, X.-Z. (2000). J. Mol. Struct. 524, 241-250.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

